Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 256
Filter
1.
Gene ; 815: 146137, 2022 Mar 20.
Article in English | MEDLINE | ID: mdl-35007686

ABSTRACT

The extracellular matrix (ECM) is composed of a mesh of proteins, proteoglycans, growth factors, and other secretory components. It constitutes the tumor microenvironment along with the endothelial cells, cancer-associated fibroblasts, adipocytes, and immune cells. The proteins of ECM can be functionally classified as adhesive proteins and matricellular proteins (MCP). In the tumor milieu, the ECM plays a major role in tumorigenesis and therapeutic resistance. The current review encompasses thrombospondins, osteonectin, osteopontin, tenascin C, periostin, the CCN family, laminin, biglycan, decorin, mimecan, and galectins. The matrix metalloproteinases (MMPs) are also discussed as they are an integral part of the ECM with versatile functions in the tumor stroma. In this review, the role of these proteins in tumor initiation, growth, invasion and metastasis have been highlighted, with emphasis on their contribution to tumor therapeutic resistance. Further, their potential as biomarkers and therapeutic targets based on existing evidence are discussed. Owing to the recent advancements in protein targeting, the possibility of agents to modulate MCPs in cancer as therapeutic options are discussed.


Subject(s)
Biomarkers, Tumor , Extracellular Matrix Proteins/physiology , Neoplasms/etiology , Neoplasms/therapy , Cell Adhesion Molecules/physiology , Extracellular Matrix Proteins/analysis , Humans , Matrix Metalloproteinases/physiology , Osteonectin/analysis , Osteonectin/physiology , Osteopontin/physiology , Tenascin/physiology , Thrombospondin 1/physiology , Treatment Outcome
2.
Mediators Inflamm ; 2021: 8876484, 2021.
Article in English | MEDLINE | ID: mdl-33981184

ABSTRACT

Thrombospondin (TSP) proteins have been shown to impact T-cell adhesion, migration, differentiation, and apoptosis. Thrombospondin-1 (TSP-1) is specifically upregulated in several inflammatory diseases and can effectively promote lipopolysaccharide- (LPS-) induced inflammation. In contrast, thrombospondin-2 (TSP-2) has been associated with activation of "anti-inflammatory" T-regulatory cells (Tregs). In this study, we investigated the effects of both TSP-1 and TSP-2 overexpression on macrophage polarization and activation in vitro and in vivo. We analyzed the effects of TSP-1 and TSP-2 on inflammation, vascular endothelial permeability, edema, ultrastructural morphology, and apoptosis in lung tissues of an ARDS mouse model and cultured macrophages. Our results demonstrated that TSP-2 overexpression effectively attenuated LPS-induced ARDS in vivo and promoted M2 macrophage phenotype polarization in vitro. Furthermore, TSP-2 played a role in regulating pulmonary vascular barrier leakage by activating the PI3K/Akt pathway. Overall, our findings indicate that TSP-2 can modulate inflammation and could therefore be a potential therapeutic target against LPS-induced ARDS.


Subject(s)
Respiratory Distress Syndrome/prevention & control , Thrombospondin 1/physiology , Thrombospondins/physiology , Animals , Capillary Permeability , Cell Polarity , Cells, Cultured , Cytokines/biosynthesis , Genetic Therapy , Lipopolysaccharides , Lung/pathology , Lung Injury/prevention & control , Macrophages/physiology , Mice , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases/physiology , Respiratory Distress Syndrome/chemically induced
3.
Int J Mol Sci ; 22(9)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925464

ABSTRACT

The identification of thrombospondin-1 as an angiogenesis inhibitor in 1990 prompted interest in its role in cancer biology and potential as a therapeutic target. Decreased thrombospondin-1 mRNA and protein expression are associated with progression in several cancers, while expression by nonmalignant cells in the tumor microenvironment and circulating levels in cancer patients can be elevated. THBS1 is not a tumor suppressor gene, but the regulation of its expression in malignant cells by oncogenes and tumor suppressor genes mediates some of their effects on carcinogenesis, tumor progression, and metastasis. In addition to regulating angiogenesis and perfusion of the tumor vasculature, thrombospondin-1 limits antitumor immunity by CD47-dependent regulation of innate and adaptive immune cells. Conversely, thrombospondin-1 is a component of particles released by immune cells that mediate tumor cell killing. Thrombospondin-1 differentially regulates the sensitivity of malignant and nonmalignant cells to genotoxic stress caused by radiotherapy and chemotherapy. The diverse activities of thrombospondin-1 to regulate autophagy, senescence, stem cell maintenance, extracellular vesicle function, and metabolic responses to ischemic and genotoxic stress are mediated by several cell surface receptors and by regulating the functions of several secreted proteins. This review highlights progress in understanding thrombospondin-1 functions in cancer and the challenges that remain in harnessing its therapeutic potential.


Subject(s)
Neoplasms , Thrombospondin 1/physiology , Tumor Microenvironment/physiology , Animals , Cell Adhesion , Cell Movement , Humans , Integrins/metabolism , Mice , Neoplasms/blood supply , Neoplasms/immunology , Neoplasms/pathology , Neovascularization, Pathologic/metabolism , Neovascularization, Physiologic/genetics , T-Lymphocytes/immunology , Thrombospondin 1/genetics , Thrombospondin 1/metabolism
4.
Blood ; 137(5): 678-689, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33538796

ABSTRACT

Thrombospondin-1 (TSP-1) is released by platelets upon activation and can increase platelet activation, but its role in hemostasis in vivo is unclear. We show that TSP-1 is a critical mediator of hemostasis that promotes platelet activation by modulating inhibitory cyclic adenosine monophosphate (cAMP) signaling. Genetic deletion of TSP-1 did not affect platelet activation in vitro, but in vivo models of hemostasis and thrombosis showed that TSP-1-deficient mice had prolonged bleeding, defective thrombosis, and increased sensitivity to the prostacyclin mimetic iloprost. Adoptive transfer of wild-type (WT) but not TSP-1-/- platelets ameliorated the thrombotic phenotype, suggesting a key role for platelet-derived TSP-1. In functional assays, TSP-1-deficient platelets showed an increased sensitivity to cAMP signaling, inhibition of platelet aggregation, and arrest under flow by prostacyclin (PGI2). Plasma swap experiments showed that plasma TSP-1 did not correct PGI2 hypersensitivity in TSP-1-/- platelets. By contrast, incubation of TSP-1-/- platelets with releasates from WT platelets or purified TSP-1, but not releasates from TSP-1-/- platelets, reduced the inhibitory effects of PGI2. Activation of WT platelets resulted in diminished cAMP accumulation and downstream signaling, which was associated with increased activity of the cAMP hydrolyzing enzyme phosphodiesterase 3A (PDE3A). PDE3A activity and cAMP accumulation were unaffected in platelets from TSP-1-/- mice. Platelets deficient in CD36, a TSP-1 receptor, showed increased sensitivity to PGI2/cAMP signaling and diminished PDE3A activity, which was unaffected by platelet-derived or purified TSP-1. This scenario suggests that the release of TSP-1 regulates hemostasis in vivo through modulation of platelet cAMP signaling at sites of vascular injury.


Subject(s)
Blood Platelets/physiology , Cyclic AMP/physiology , Hemorrhagic Disorders/genetics , Hemostasis/physiology , Thrombospondin 1/physiology , Animals , Bleeding Time , Blood Platelets/drug effects , CD36 Antigens/deficiency , CD36 Antigens/physiology , Cells, Cultured , Chlorides/toxicity , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , Cytoplasmic Granules/metabolism , Epoprostenol/physiology , Ferric Compounds/toxicity , Humans , Iloprost/pharmacology , Mice , Mice, Inbred C57BL , Platelet Transfusion , Second Messenger Systems/physiology , Thrombosis/chemically induced , Thrombosis/prevention & control , Thrombospondin 1/deficiency , Thrombospondin 1/pharmacology
5.
Int J Mol Sci ; 21(14)2020 Jul 12.
Article in English | MEDLINE | ID: mdl-32664627

ABSTRACT

The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease. This neglected tropical disease causes severe morbidity and mortality in endemic regions. About 30% of T. cruzi infected individuals will present with cardiac complications. Invasive trypomastigotes released from infected cells can be carried in the vascular endothelial system to infect neighboring and distant cells. During the process of cellular infection, the parasite induces host cells, to increase the levels of host thrombospondin-1 (TSP-1), to facilitate the process of infection. TSP-1 plays important roles in the functioning of vascular cells, including vascular endothelial cells with important implications in cardiovascular health. Many signal transduction pathways, including the yes-associated protein 1 (YAP)/transcriptional coactivator, with PDZ-binding motif (TAZ) signaling, which are upstream of TSP-1, have been linked to the pathophysiology of heart damage. The molecular mechanisms by which T. cruzi signals, and eventually infects, heart endothelial cells remain unknown. To evaluate the importance of TSP-1 expression in heart endothelial cells during the process of T. cruzi infection, we exposed heart endothelial cells prepared from Wild Type and TSP-1 Knockout mouse to invasive T. cruzi trypomastigotes at multiple time points, and evaluated changes in the hippo signaling cascade using immunoblotting and immunofluorescence assays. We found that the parasite turned off the hippo signaling pathway in TSP-1KO heart endothelial cells. The levels of SAV1 and MOB1A increased to a maximum of 2.70 ± 0.23 and 5.74 ± 1.45-fold at 3 and 6 h, respectively, in TSP-1KO mouse heart endothelial cells (MHEC), compared to WT MHEC, following a parasite challenge. This was accompanied by a significant continuous increase in the nuclear translocation of downstream effector molecule YAP, to a maximum mean nuclear fluorescence intensity of 10.14 ± 0.40 at 6 h, compared to wild type cells. Furthermore, we found that increased nuclear translocated YAP significantly colocalized with the transcription co-activator molecule pan-TEAD, with a maximum Pearson's correlation coefficient of 0.51 ± 0.06 at 6 h, compared to YAP-Pan-TEAD colocalization in the WT MHEC, which decreased significantly, with a minimum Pearson's correlation coefficient of 0.30 ± 0.01 at 6 h. Our data indicate that, during the early phase of infection, upregulated TSP-1 is essential for the regulation of the hippo signaling pathway. These studies advance our understanding of the molecular interactions occurring between heart endothelial cells and T. cruzi, in the presence and absence of TSP-1, providing insights into processes linked to parasite dissemination and pathogenesis.


Subject(s)
Active Transport, Cell Nucleus/physiology , Endothelial Cells/parasitology , Myoblasts/parasitology , Myocardium/cytology , Protozoan Proteins/physiology , Thrombospondin 1/physiology , Trypanosoma cruzi/physiology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Endothelial Cells/metabolism , Gene Knockout Techniques , Mice , Myoblasts/metabolism , Protein Serine-Threonine Kinases/metabolism , Rats , Signal Transduction/physiology , Thrombospondin 1/deficiency , Trans-Activators/physiology
6.
Theranostics ; 10(6): 2597-2611, 2020.
Article in English | MEDLINE | ID: mdl-32194822

ABSTRACT

Rationale: Despite the preferred application of arterial conduits, the greater saphenous vein (SV) remains indispensable for coronary bypass grafting (CABG), especially in multi-vessel coronary artery disease (CAD). The objective of the present work was to address the role of mechanical forces in the activation of maladaptive vein bypass remodeling, a process determining progressive occlusion and recurrence of ischemic heart disease. Methods: We employed a custom bioreactor to mimic the coronary shear and wall mechanics in human SV vascular conduits and reproduce experimentally the biomechanical conditions of coronary grafting and analyzed vein remodeling process by histology, histochemistry and immunofluorescence. We also subjected vein-derived cells to cyclic uniaxial mechanical stimulation in culture, followed by phenotypic and molecular characterization using RNA and proteomic methods. We finally validated our results in vitro and using a model of SV carotid interposition in pigs. Results: Exposure to pulsatile flow determined a remodeling process of the vascular wall involving reduction in media thickness. Smooth muscle cells (SMCs) underwent conversion from contractile to synthetic phenotype. A time-dependent increase in proliferating cells expressing mesenchymal (CD44) and early SMC (SM22α) markers, apparently recruited from the SV adventitia, was observed especially in CABG-stimulated vessels. Mechanically stimulated SMCs underwent transition from contractile to synthetic phenotype. MALDI-TOF-based secretome analysis revealed a consistent release of Thrombospondin-1 (TSP-1), a matricellular protein involved in TGF-ß-dependent signaling. TSP-1 had a direct chemotactic effect on SV adventitia resident progenitors (SVPs); this effects was inhibited by blocking TSP-1 receptor CD47. The involvement of TSP-1 in adventitial progenitor cells differentiation and graft intima hyperplasia was finally contextualized in the TGF-ß-dependent pathway, and validated in a saphenous vein into carotid interposition pig model. Conclusions: Our results provide the evidence of a matricellular mechanism involved in the human vein arterialization process controlled by alterations in tissue mechanics, and open the way to novel potential strategies to block VGD progression based on targeting cell mechanosensing-related effectors.


Subject(s)
Coronary Artery Bypass , Myocytes, Smooth Muscle , Saphenous Vein , Thrombospondin 1/physiology , Vascular Remodeling , Adult , Aged , Animals , Cell Proliferation , Cells, Cultured , Female , Graft Occlusion, Vascular/physiopathology , Humans , Male , Mechanical Phenomena , Middle Aged , Myocytes, Smooth Muscle/cytology , Saphenous Vein/cytology , Swine
7.
Clin Transl Oncol ; 22(10): 1730-1740, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32052380

ABSTRACT

OBJECTIVE: Liver metastasis is one of the major causes of cancer-related death in patients with colorectal cancer (CRC). The purpose of this study was to identify specific molecules which are involved in colorectal liver metastasis (CRLM). MATERIALS AND METHODS: In this study, we employed TMT (tandem mass tags)-labeling combined with liquid chromatography-mass spectrometry technology to do comparative analyses of proteomics between the primary tumor specimens derived from colorectal cancer patients with or without liver metastasis. Pathway enrichment analyses were performed using DAVID database. The crucial molecules were identified through protein-protein interaction network. Immunohistochemistry (IHC) was employed to analyze the expression of THBS1 (thrombospondin-1) in CRC tissues. Finally, transwell cell migration and invasion assays were performed to explore the roles of THBS1 in CRC cell migration and invasion. RESULTS: We found that the expression of 311 proteins was dysregulated in CRLM using quantitative proteomics. Among these proteins, we identified FN1, TIMP1, THBS1, POSTN and VCAN as five crucial proteins in CRLM by analysis in silico. IHC assay revealed that increased THBS1 expression was significantly correlated with liver metastasis as well as poor prognosis of CRC patients. GEO data analysis also suggests that upregulated mRNA level of THBS1 is also associated with shorter overall survival of CRC patients. Moreover, THBS1 depletion inhibited migration and invasion of CRC cells through attenuating epithelial-mesenchymal transition. Co-expression analyses with TCGA data indicated that THBS1 is co-expressed with mesenchymal markers, including Vimentin, N-cadherin, Snail1 and Twist1 in CRC tissues. CONCLUSIONS: By collecting the omics data with functional studies, the present results reveal that THBS1 facilitates colorectal liver metastasis through promoting epithelial-mesenchymal transition. This understanding of molecular roles of THBS1 in CRLM may be promising to develop targeted therapies to prolong survival in CRC patients.


Subject(s)
Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition , Liver Neoplasms/secondary , Thrombospondin 1/physiology , Cell Line, Tumor , Cell Movement , Colorectal Neoplasms/mortality , Humans , Immunohistochemistry , Neoplasm Invasiveness , Protein Interaction Maps
8.
Elife ; 92020 01 14.
Article in English | MEDLINE | ID: mdl-31934850

ABSTRACT

Intermittent hypoxia (IH) is the predominant pathophysiological disturbance in obstructive sleep apnea (OSA), known to be independently associated with cardiovascular diseases. However, the effect of IH on cardiac fibrosis and molecular events involved in this process are unclear. Here, we tested IH in angiotensin II (Ang II)-induced cardiac fibrosis and signaling linked to fibroblast activation. IH triggered cardiac fibrosis and aggravated Ang II-induced cardiac dysfunction in mice. Plasma thrombospondin-1 (TSP1) content was upregulated in both IH-exposed mice and OSA patients. Moreover, both in vivo and in vitro results showed IH-induced cardiac fibroblast activation and increased TSP1 expression in cardiac fibroblasts. Mechanistically, phosphorylation of STAT3 at Tyr705 mediated the IH-induced TSP1 expression and fibroblast activation. Finally, STAT3 inhibitor S3I-201 or AAV9 carrying a periostin promoter driving the expression of shRNA targeting Stat3 significantly attenuated the synergistic effects of IH and Ang II on cardiac fibrosis in mice. This work suggests a potential therapeutic strategy for OSA-related fibrotic heart disease.


Subject(s)
Fibroblasts/cytology , Heart/physiology , Hypoxia/metabolism , Myocardium/pathology , STAT3 Transcription Factor/metabolism , Thrombospondin 1/physiology , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/physiology , Echocardiography , Fibrosis , Gene Expression Regulation , Gene Silencing , Humans , Male , Mice , Mice, Inbred C57BL , Phosphorylation , Promoter Regions, Genetic , RNA, Small Interfering/metabolism , Signal Transduction , Tyrosine/chemistry
9.
Am J Pathol ; 190(2): 347-357, 2020 02.
Article in English | MEDLINE | ID: mdl-31734229

ABSTRACT

Severe hepatic insults can lead to acute liver failure and hepatic encephalopathy (HE). Transforming growth factor ß1 (TGFß1) has been shown to contribute to HE during acute liver failure; however, TGFß1 must be activated to bind its receptor and generate downstream effects. One protein that can activate TGFß1 is thrombospondin-1 (TSP-1). Therefore, the aim of this study was to assess TSP-1 during acute liver failure and HE pathogenesis. C57Bl/6 or TSP-1 knockout (TSP-1-/-) mice were injected with azoxymethane (AOM) to induce acute liver failure and HE. Liver damage, neurologic decline, and molecular analyses of TSP-1 and TGFß1 signaling were performed. AOM-treated mice had increased TSP-1 and TGFß1 mRNA and protein expression in the liver. TSP-1-/- mice administered AOM had reduced liver injury as assessed by histology and serum transaminase levels compared with C57Bl/6 AOM-treated mice. TSP-1-/- mice treated with AOM had reduced TGFß1 signaling that was associated with less hepatic cell death as assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining and cleaved caspase 3 expression. TSP-1-/- AOM-treated mice had a reduced rate of neurologic decline, less cerebral edema, and a decrease in microglia activation in comparison with C57Bl/6 mice treated with AOM. Taken together, TSP-1 is an activator of TGFß1 signaling during AOM-induced acute liver failure and contributes to both liver pathology and HE progression.


Subject(s)
Disease Models, Animal , Hepatic Encephalopathy/pathology , Liver Failure, Acute/pathology , Thrombospondin 1/physiology , Transforming Growth Factor beta1/metabolism , Animals , Azoxymethane/toxicity , Carcinogens/toxicity , Cell Death , Hepatic Encephalopathy/etiology , Hepatic Encephalopathy/metabolism , Liver Failure, Acute/etiology , Liver Failure, Acute/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction
10.
Neuron ; 103(4): 642-657.e7, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31255486

ABSTRACT

Neuronal subtypes show diverse injury responses, but the molecular underpinnings remain elusive. Using transgenic mice that allow reliable visualization of axonal fate, we demonstrate that intrinsically photosensitive retinal ganglion cells (ipRGCs) are both resilient to cell death and highly regenerative. Using RNA sequencing (RNA-seq), we show genes that are differentially expressed in ipRGCs and that associate with their survival and axon regeneration. Strikingly, thrombospondin-1 (Thbs1) ranked as the most differentially expressed gene, along with the well-documented injury-response genes Atf3 and Jun. THBS1 knockdown in RGCs eliminated axon regeneration. Conversely, RGC overexpression of THBS1 enhanced regeneration in both ipRGCs and non-ipRGCs, an effect that was dependent on syndecan-1, a known THBS1-binding protein. All structural domains of the THBS1 were not equally effective; the trimerization and C-terminal domains promoted regeneration, while the THBS type-1 repeats were dispensable. Our results identify cell-type-specific induction of Thbs1 as a novel gene conferring high regenerative capacity.


Subject(s)
Nerve Regeneration/physiology , Retinal Ganglion Cells/physiology , Thrombospondin 1/physiology , Animals , Apoptosis , Axons/metabolism , Cell Line , Female , Gene Expression Profiling , Genes, Reporter , Insulin-Like Growth Factor I/deficiency , Insulin-Like Growth Factor I/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nerve Crush , Optic Nerve Injuries/genetics , Optic Nerve Injuries/physiopathology , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Rod Opsins/deficiency , Rod Opsins/physiology , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/physiology , Thrombospondin 1/biosynthesis , Thrombospondin 1/genetics , Transcription, Genetic
11.
Oncol Res ; 27(2): 211-218, 2019 Feb 05.
Article in English | MEDLINE | ID: mdl-29540257

ABSTRACT

Osteosarcomas, especially those with metastatic or unresectable disease, have limited treatment options. The antitumor effects of pharmacologic inhibitors of angiogenesis in osteosarcomas are hampered in patients by the rapid development of tumor resistance, notably through increased invasiveness and accelerated metastasis. Here we demonstrated that thrombospondin 1 (TSP-1) is a potent inhibitor of the growth and metastasis of the osteosarcoma cell line MG-63. Moreover, we demonstrate that upregulation of TSP-1 facilitated expression of vasculostatin in MG-63 cells. In angiogenesis assays, overexpression of TSP-1 inhibited MG-63 cells and induced tube formation of human umbilical vein endothelial cells (HUVECs) in a CD36-dependent fashion. Finally, in xenografted tumors, we observed that TSP-1 overexpression inhibited angiogenesis and tumor growth. These results provided strong evidence for an important role of the TSP-1/CD36/vasculostatin signaling axis in mediating the antiangiogenic activity of osteosarcoma.


Subject(s)
Bone Neoplasms/pathology , Neovascularization, Pathologic/etiology , Osteosarcoma/pathology , Thrombospondin 1/physiology , Animals , CD36 Antigens/physiology , Cell Line, Tumor , Humans , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Mice , Mice, Inbred BALB C
12.
PLoS One ; 14(12): e0226854, 2019.
Article in English | MEDLINE | ID: mdl-31891606

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a progressive liver disease characterized by dysregulated lipid metabolism and chronic inflammation ultimately resulting in fibrosis. Untreated, NAFLD may progress to non-alcoholic steatohepatitis (NASH), cirrhosis and death. However, currently there are no FDA approved therapies that treat NAFLD/NASH. Thrombospondin-I (TSP-1) is a large glycoprotein in the extracellular matrix that regulates numerous cellular pathways including transforming growth factor beta 1 (TGF-ß1) activation, angiogenesis, inflammation and cellular adhesion. Increased expression of TSP-1 has been reported in various liver diseases; however, its role in NAFLD/NASH is not well understood. We first examined TSP-1 modulation in hepatic stellate cell activation, a critical initiating step in hepatic fibrosis. Knockdown or inhibition of TSP-1 attenuated HSC activation measured by alpha smooth muscle actin (α-SMA) and Collagen I expression. To investigate the impact of TSP-1 modulation in context of NAFLD/NASH, we examined the effect of TSP-1 deficiency in the choline deficient L-amino acid defined high fat diet (CDAHFD) model of NASH in mice by assessing total body and liver weight, serum liver enzyme levels, serum lipid levels, liver steatosis, liver fibrosis and liver gene expression in wild type (WT) and TSP-1 null mice. CDAHFD fed mice, regardless of genotype, developed phenotypes of NASH, including significant increase in liver weight and liver enzymes, steatosis and fibrosis. However, in comparison to WT, CDAHFD-fed TSP-1 deficient mice were protected against numerous NASH phenotypes. TSP-1 null mice exhibited a decrease in serum lipid levels, inflammation markers and hepatic fibrosis. RNA-seq based transcriptomic profiles from the liver of CDAHFD fed mice determined that both WT and TSP-1 null mice exhibited similar gene expression signatures following CDAHFD, similar to biophysical and histological assessment comparison. Comparison of transcriptomic profiles based on genotype suggested that peroxisome proliferator activated receptor alpha (PPARα) pathway and amino acid metabolism pathways are differentially expressed in TSP-1 null mice. Activation of PPARα pathway was supported by observed decrease in serum lipid levels. Our findings provide important insights into the role of TSP-1 in context of NAFLD/NASH and TSP-1 may be a target of interest to develop anti-fibrotic therapeutics for NAFLD/NASH.


Subject(s)
Lipid Metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Thrombospondin 1/physiology , Animals , Biomarkers/metabolism , Cells, Cultured , Choline Deficiency , Disease Models, Animal , Hepatic Stellate Cells , Humans , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/chemically induced , Thrombospondin 1/genetics
13.
Ocul Surf ; 16(4): 470-477, 2018 10.
Article in English | MEDLINE | ID: mdl-30055331

ABSTRACT

PURPOSE: In this study, we examine the expression of corneal epithelium-derived thrombospondin-1 (TSP-1) and its immunomodulatory functions in a validated murine model of dry eye disease (DED). METHODS: DED was induced in female C57BL/6 using a controlled environment chamber (CEC) for 14 days. mRNA and protein expression of TSP-1 by corneal epithelial cells was quantified using real-time PCR and flow cytometry. Corneal epithelial cells from either naïve or DED mice were cultured with bone marrow derived dendritic cells (BMDCs) in the presence of IFNγ for 48 h, and BMDC expression of MHC-II and CD86 was determined using flow cytometry. Next, either recombinant TSP-1 or anti-TSP-1 antibody was added to the co-culture, and BMDC expression of above activation markers was evaluated. Finally, either DED mice were topically treated with either recombinant TSP-1 or human serum albumin (HSA), and maturation of corneal DCs, expression of inflammatory cytokines, and DED severity were investigated. RESULTS: mRNA expression of TSP-1 by the corneal epithelium was upregulated in DED. Corneal epithelial cells derived from mice with DED demonstrated an enhanced capacity in suppressing BMDC expression of MHC-II and CD86 relative to wild type mice, and this effect was abrogated by TSP-1 blockade and potentiated by recombinant TSP-1. Finally, topical application of recombinant TSP-1 significantly suppressed corneal DC maturation and mRNA expression of pro-inflammatory cytokines, and ameliorated disease severity in mice with DED. CONCLUSIONS: Our study elucidates the function of epithelium-derived TSP-1 in inhibiting DC maturation and shows its translational potential to limit corneal epitheliopathy in DED.


Subject(s)
Dry Eye Syndromes/immunology , Epithelium, Corneal/immunology , Thrombospondin 1/physiology , Animals , Cornea/metabolism , Dendritic Cells/immunology , Dry Eye Syndromes/metabolism , Epithelial Cells/metabolism , Epithelium, Corneal/metabolism , Female , Humans , Mice , Mice, Inbred C57BL , Thrombospondin 1/metabolism
14.
Inflammation ; 40(5): 1606-1621, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28634844

ABSTRACT

Thrombospondin-1 (TSP-1) is upregulated in several inflammatory diseases. Recent data have shown that macrophages from TSP-1-deficient mice have a reduced inflammatory phenotype, suggesting that TSP-1 plays a part in macrophage activation. DNA microarray approach revealed that Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS) may induce the enhanced TSP-1 expression in human monocytes, suggesting a role of TSP-1-mediated pathogenesis in periodontitis. Until recently, the function of TSP-1 has been a matter of debate. In this study, we explored the role of TSP-1 in inflammatory cytokine secretions and its putative mechanism in pathogenesis of periodontitis. We demonstrated that TSP-1 expression was significantly upregulated in gingival tissues with periodontitis and in P. gingivalis LPS-stimulated THP-1 cells. Deficiency of TSP-1 by transfecting siRNAs decreased IL-6, IL-1ß, and TNF-α secretions in THP-1 cells, whereas overexpression of TSP-1 resulted in an upregulation of IL-6, IL-1ß, and TNF-α productions. Additional experiments showed that Pyrrolidine dithiocarbamate (PDTC) inhibited IL-6, IL-1ß, and TNF-α expression induced by overexpression of TSP-1, accompanying with downregulation of phosphorylated p65 and IκBα protein levels in response to P. gingivalis LPS. These results indicated that TSP-1 played a significant role in P. gingivalis LPS-initiated inflammatory cytokines (IL-6, IL-1ß, and TNF-α) secretions of THP-1 cells, and the NF-κB signaling is involved in its induction of expression. Thus, TSP-1 effectively elevated P. gingivalis LPS-induced inflammation mediated by the NF-κB pathway and may be critical for pathology of periodontitis.


Subject(s)
Cytokines/metabolism , Inflammation/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , Thrombospondin 1/physiology , Humans , Inflammation/chemically induced , Lipopolysaccharides , Periodontitis/etiology , Periodontitis/microbiology , Periodontitis/pathology , Porphyromonas gingivalis/pathogenicity , THP-1 Cells , Thrombospondin 1/biosynthesis , Thrombospondin 1/pharmacology
15.
Dig Dis Sci ; 62(8): 1963-1974, 2017 08.
Article in English | MEDLINE | ID: mdl-28434074

ABSTRACT

BACKGROUND: Adipose tissue-derived stem cells (ASCs) have been investigated as therapeutic tools for a variety of autoimmune diseases, including inflammatory diseases. However, the mechanisms underlying the immunomodulatory properties of ASCs are not well understood. Here, we investigated the mechanism of regulatory T cell (Treg) induction in ASC therapy in a murine model of inflammatory bowel disease. METHODS: Acute colitis was induced in mice using dextran sulfate sodium and ASCs administered intraperitoneally. Tregs and CD103+ dendritic cells were analyzed in the mesenteric lymph nodes (MLNs), spleen, and colonic lamina propria (CLP). Activation of latent TGF-ß by ASCs was analyzed in vitro using ELISA. siRNA technology was used to create ASCs in which TSP-1 or integrinαv was knocked down in order to investigate the involvement of these proteins in the activation of latent TGF-ß. In addition, TSP-1-knockdown ASCs were administered to mice with colitis to assess their clinical efficacy in vivo. RESULTS: Systemic administration of ASCs significantly lessened the clinical and histopathological severity of colitis. ASCs were distributed throughout the lymphatic system in the MLNs and spleen. Tregs were increased in the MLNs and CLP, but CD103+ dendritic cells were not significantly altered. The ASCs activated latent TGF-ß. TSP-1 knockdown impaired TGF-ß activation in vitro and abrogated the therapeutic effects of the ASCs in vivo. Furthermore, Tregs were not increased in the MLNs and CLP from mice treated with TSP-1-knockdown ASCs. CONCLUSIONS: These results demonstrate that ASCs induce Tregs by activating latent TGF-ß via TSP-1, independent of CD103+ dendritic cell induction.


Subject(s)
Adipose Tissue/cytology , Colitis/therapy , Stem Cell Transplantation/methods , Stem Cells/physiology , Thrombospondin 1/physiology , Transforming Growth Factor beta/metabolism , Animals , Antigens, CD/metabolism , Cell Movement , Colitis/chemically induced , Dendritic Cells/metabolism , Dextran Sulfate , Disease Models, Animal , Female , Gene Knockdown Techniques , Integrin alpha Chains/metabolism , Male , Mice , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/cytology , Thrombospondin 1/genetics
16.
Oncotarget ; 7(34): 55155-55168, 2016 Aug 23.
Article in English | MEDLINE | ID: mdl-27487140

ABSTRACT

We studied the changes of intratumoral stromal proteins including THBS1, TNC, FN, SPARC and α-SMA, following neoadjuvant chemotherapy. The underlying mechanisms by which THBS1 and TNC regulated resistance to docetaxel were further studied using functional studies. 100 patients with newly diagnosed breast cancer were treated with alternating sequential doxorubicin and docetaxel. Immunohistochemistry (IHC) staining for stromal proteins was performed on pre- and post-treatment core biopsies respectively. THBS1 and TNC were further validated with IHC in an independent cohort of 31 patients. A high baseline combined expression score of the 5 stromal proteins predicted independently for poor progression-free (HRadjusted 2.22, 95% CI 1.06-4.64) and overall survival (HRadjusted 5.94, 95% CI 2.25-15.71). After 1-2 cycles of chemotherapy, increased expression of THBS1, TNC, FN, SPARC and α-SMA was seen in patients with subsequent pathological lymph node involvement at surgery. Increased expression of THBS1 and TNC compared to baseline was also seen in intrinsically resistant tumors, but not in sensitive ones. Both THBS1 and TNC-associated chemoresistance were confirmed in an independent validation cohort. Exogenous THBS1 and TNC protected MCF-7 cells against proliferation inhibition induced by docetaxel through activating integrin ß1/mTOR pathway. Thus, up-regulation of THBS1, TNC, FN, SPARC and α-SMA following neoadjuvant chemotherapy was associated with chemotherapy resistance in breast cancer patients. Functional studies showed THBS1 and TNC to mediate chemoresistance through the integrin ß1/mTOR pathway, suggesting that therapies targeting integrin ß1/mTOR pathway may be a promising strategy to overcome chemotherapy resistance.


Subject(s)
Breast Neoplasms/drug therapy , Tenascin/physiology , Thrombospondin 1/physiology , Adult , Aged , Breast Neoplasms/chemistry , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm , Female , Humans , Integrin beta1/physiology , Middle Aged , Signal Transduction/physiology , TOR Serine-Threonine Kinases/physiology , Tenascin/analysis , Thrombospondin 1/analysis
17.
Medicine (Baltimore) ; 95(33): e4524, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27537575

ABSTRACT

This study is aimed to investigate whether serum angiostatic factors (thrombospondin-1 [TSP-1] and endostatin) or angiogenic factors (angiopoietin-2 [Ang-2]) are related to coronary collateral vessel development in patients with chronic total occlusion (CTO).A total of 149 patients were enrolled in the study, and 39 patients with coronary artery disease but without significant stenosis were included in control group. In 110 patients with CTO lesion, 79 with Rentrop grades 2 to 3 collaterals were grouped as good collateral, while 31 with Rentrop grades 0 to 1 collaterals were grouped as poor collateral. Serum TSP-1, endostatin, and Ang-2 levels were studied.Serum endostatin level was significantly higher in poor collateral group compared with control group and good collateral group, respectively (96.2 ±â€Š30.4 vs 77.8 ±â€Š16.5 ng/mL, P = 0.007; 96.2 ±â€Š30.4 vs 81.2 ±â€Š30.4 ng/mL, P = 0.018). In multivariate analysis, decreased serum endostatin level was independently related to good coronary collateral development. Serum TSP-1 level was lower in patients with CTO compared with control group. However, no difference in TSP-1 level was detected between poor and good collateral group. The serum Ang-2 level did not show a significant difference among 3 groups.Circulatory endostatin may be a useful biomarker for coronary collateral development and potential target for therapeutic angiogenesis in patients with CTO.


Subject(s)
Angiopoietin-2/blood , Collateral Circulation/physiology , Coronary Occlusion/blood , Endostatins/blood , Thrombospondin 1/blood , Angiopoietin-2/physiology , Biomarkers/blood , Case-Control Studies , Chronic Disease , Coronary Artery Disease/blood , Coronary Artery Disease/physiopathology , Coronary Occlusion/physiopathology , Endostatins/physiology , Female , Humans , Male , Middle Aged , Thrombospondin 1/physiology
18.
Matrix Biol ; 55: 106-116, 2016 09.
Article in English | MEDLINE | ID: mdl-26992552

ABSTRACT

Mesenchymal stromal cells (MSC) are characterized by unique tropism for wounded tissues, high differentiating capacity, ability to induce tissue repair, and anti-inflammatory and immunoregulatory activities. This has generated interest in their therapeutic use in severe human conditions as well as in regenerative medicine and tissue engineering. Identification of factors involved in the regulation of MSC proliferation, migration and differentiation could provide insights into the pathophysiological regulation of MSC and be exploited to optimize clinical grade expansion protocols for therapeutic use. Here we identify thrombospondin-1 (TSP-1) as a major regulator of MSC. TSP-1 induced MSC proliferation. This effect was mediated by TSP-1-induced activation of endogenous TGFß, as shown by the inhibitory effects of anti-TGFß antibodies and by the lack of activity of TSP-2 - that does not activate TGFß. Moreover, TSP-1 strongly potentiated the proliferative and migratory activity of PDGF on MSC. TSP-1 directly bound to PDGF, through a site located within the TSP-1 type III repeats, and protected the growth factor from degradation by MSC-derived proteases, hence increasing its stability and bioavailability. The studies presented here identify a more comprehensive picture of the pleiotropic effect of TSP-1 on MSC behavior, setting the basis for further studies aimed at investigating the possible use of PDGF and TSP-1 in the in vitro expansion of MSC for therapeutic applications.


Subject(s)
Mesenchymal Stem Cells/physiology , Platelet-Derived Growth Factor/physiology , Thrombospondin 1/physiology , Cell Movement , Cell Proliferation , Cells, Cultured , Humans , Protein Binding , Proteolysis , Transforming Growth Factor beta/physiology
19.
J Leukoc Biol ; 100(2): 371-80, 2016 08.
Article in English | MEDLINE | ID: mdl-26856994

ABSTRACT

Allergic eye disease, as in most forms of atopy, ranges in severity among individuals from immediate hypersensitivity to a severe and debilitating chronic disease. Dendritic cells play a key role in stimulating pathogenic T cells in allergen re-exposure, or secondary responses. However, molecular cues by dendritic cells underpinning allergic T cell response levels and the impact that this control has on consequent severity of allergic disease are poorly understood. Here, we show that a deficiency in thrombospondin-1, a matricellular protein known to affect immune function, has subsequent effects on downstream T cell responses during allergy, as revealed in an established mouse model of allergic eye disease. More specifically, we demonstrate that a thrombospondin-1 deficiency specific to dendritic cells leads to heightened secondary T cell responses and consequent clinical disease. Interestingly, whereas thrombospondin-1-deficient dendritic cells augmented activity of allergen-primed T cells, this increase was not recapitulated with naïve T cells in vitro. The role of dendritic cell-derived thrombospondin-1 in regulating secondary allergic T cell responses was confirmed in vivo, as local transfer of thrombospondin-1-sufficient dendritic cells to the ocular mucosa of thrombospondin-1 null hosts prevented the development of augmented secondary T cell responses and heightened allergic eye disease clinical responses. Finally, we demonstrate that topical instillation of thrombospondin-1-derived peptide reduces T cell activity and clinical progression of allergic eye disease. Taken together, this study reveals an important modulatory role of dendritic cell-derived thrombospondin-1 on secondary allergic T cell responses and suggests the possible dysregulation of dendritic cell-derived thrombospondin-1 expression as a factor in allergic eye disease severity.


Subject(s)
Allergens/immunology , Dendritic Cells/immunology , Eye Diseases/immunology , Hypersensitivity/immunology , T-Lymphocytes/immunology , Thrombospondin 1/physiology , Animals , Eye Diseases/chemically induced , Eye Diseases/metabolism , Hypersensitivity/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Ovalbumin/toxicity
20.
Mol Cell Biochem ; 412(1-2): 111-7, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26728995

ABSTRACT

Thrombospondin-1 (TSP-1) is an important regulator of vascular smooth muscle cell (VSMC) physiology and gene expression. MicroRNAs (microRNA), small molecules that regulate protein translation, have emerged as potent regulators of cell function. MicroRNAs have been shown to be involved in intimal hyperplasia, atherosclerosis, and upregulated in the vasculature in diabetes. The purpose of this study was to identify microRNAs regulated by TSP-1 in vascular smooth muscle cells (VSMCs). Human VSMCs were treated for 6 h with basal media or TSP-1 both supplemented with 0.2% FBS. Cells were then snap frozen and RNA extracted. An Affymetrix GeneChip microRNA array analysis was performed in triplicate on three separate collections. Confirmatory qrtPCR was performed. Data were analyzed by ANOVA or t test, with significance set at p < 0.05. MicroRNAs identified were subjected to KEGG pathway analysis using the DIANA tools miRPath online tool. TSP-1 upregulated 22 microRNAs and downregulated 18 microRNAs in VSMCs (p < 0.05). The most upregulated microRNA was miR-512-3p (45.12 fold). The microRNA most downregulated by TSP-1 was miR-25-5p, which was decreased by 9.61. Of note, five members of the mir-17-92 cluster were downregulated. KEGG analysis revealed that thirty-three cellular signaling pathways were impacted by these microRNAs and that nine pathways were relevant to vascular disease. MicroRNAs regulate protein expression at the level of translation and may represent a significant mechanism by which TSP-1 regulates VSMC function. Several of the microRNAs identified have a role in vascular function. The miR-17-92 cluster family, which was found to exhibit reduced expression in this study, is known to be involved in angiogenesis and vascular function. TSP-1 regulates multiple microRNAs in VSMCs adding a new layer of complexity to TSP-1 regulation of VSMC function.


Subject(s)
MicroRNAs/physiology , Muscle, Smooth, Vascular/metabolism , Thrombospondin 1/physiology , Cells, Cultured , Humans , Muscle, Smooth, Vascular/cytology , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...